Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic perturbation screen is a powerful tool to probe gene function. However, experimental noises, especially for the lowly expressed genes, need to be accounted for to maintain proper control of false positive rate. We develop a statistical method, named CRISPR screen with Expression Data Analysis (CEDA), to integrate gene expression profiles and CRISPR screen data for identifying essential genes. CEDA stratifies genes based on expression level and adopts a three-component mixture model for the log-fold change of single-guide RNAs (sgRNAs). Empirical Bayesian prior and expectation-maximization algorithm are used for parameter estimation and false discovery rate inference. Taking advantage of gene expression data, CEDA identifies essential genes with higher expression. Compared to existing methods, CEDA shows comparable reliability but higher sensitivity in detecting essential genes with moderate sgRNA fold change. Therefore, using the same CRISPR data, CEDA generates an additional hit gene list. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call