Abstract
Rumors spread dramatically fast through online social media services, and people are exploring methods to detect rumors automatically. Existing methods typically learn semantic representations of all reposts to a rumor candidate for prediction. However, it is crucial to efficiently detect rumors as early as possible before they cause severe social disruption, which has not been well addressed by previous works. In this paper, we present a novel early rumor detection model, Credible Early Detection (CED). By regarding all reposts to a rumor candidate as a sequence, the proposed model will seek an early point-in-time for making a credible prediction. We conduct experiments on three real-world datasets, and the results demonstrate that our proposed model can remarkably reduce the time span for prediction by more than 85 percent, with better accuracy performance than all state-of-the-art baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.