Abstract

Cecropins are naturally occurring peptides that play an important role in the immune response of insects. Cecropin A-derived and cecropin A-melittin hybrid peptides, all smaller than the natural compound cecropin A, were synthesized and tested for their ability to inhibit growth of several agronomically important fungal pathogens. We found that an 11-amino-acid sequence, corresponding to the N-terminal amphipathic alpha-helix domain of cecropin A, exhibited antifungal activity. Differences in susceptibility of the various pathogens were observed, Phytophthora infestans being particularly sensitive to the shortened cecropin A peptides (IC50 = 2 x 10(-6) M). Biotoxicity of the shortest cecropin A-derived peptide was variously affected by the presence of proteins extracted from leaves of tobacco and tomato plants, either total extracts or intercellular fluids (ICFs). Overall, there was a greater tolerance to tomato protein extracts than to tobacco extracts. These findings suggest that tobacco should not be used as a model for testing the possible protective effects of transgenically expressed, cecropin-based genes. The feasibility of tailoring cecropin A genes to enhance crop protection in particular plant/fungus combinations is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.