Abstract
In clustering applications, prior knowledge about cluster membership is sometimes available. To integrate such auxiliary information, constraint-based (or semi-supervised) methods have been proposed in the hard or fuzzy clustering frameworks. This approach is extended to evidential clustering, in which the membership of objects to clusters is described by belief functions. A variant of the Evidential C-means (ECM) algorithm taking into account pairwise constraints is proposed. These constraints are translated into the belief function framework and integrated in the cost function. Experiments with synthetic and real data sets demonstrate the interest of the method. In particular, an application to medical image segmentation is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.