Abstract
Ce-substituted lithium ferrite, Li0.5CexFe2.5−xO4 (x = 0, 0.05 and 0.1) compositions were synthesized from metal nitrates and citric acid by the solution combustion process by keeping the oxidizer to fuel ratio at unity. The thermal decomposition process was investigated by thermogravimetry–differential thermal analysis, which showed a stable phase formation above 600 °C. The phase composition and molecular bonding of Li0.5CexFe2.5−xO4 were characterized by X-ray powder diffraction analysis and Fourier transform infrared spectroscopy, respectively. An extensive study of electrical relaxation process has been represented with impedance and modulus as a function of frequency at different temperatures. The activation energy obtained from both the formalisms was found to be equal within the error. The dc conductivity and hopping frequency were thermally activated and their activation energies were found to be in the range of 0.69–0.64 eV for x = 0.05. The scaling of modulus and impedance were used to understand the electrical relaxation behaviour of the compositions and they suggest the time temperature superposition principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.