Abstract
Ce-doped mesoporous alumina supported Fe-based catalyst (Fe2O3/Meso-CeAl) was prepared and employed for 1,3-butadiene (BD) synthesis by oxidative dehydrogenation of 1-butene, using CO2 as soft oxidant. The worm-like porous structure of Fe2O3/Meso-CeAl catalyst with highly dispersed Ce in alumina matrix and high dispersion of iron species on Meso-CeAl surface was confirmed by N2 adsorption, transmission electron microscopy and X-ray diffraction results. Compared with Fe2O3/γ-Al2O3 and Fe2O3/Meso-Al2O3 catalysts, X-ray photoelectron spectroscopy and CO2-TPD results respectively demonstrated the increasing in oxygen storage capacity and improvement in CO2 adsorption and activation ability for Fe2O3/Meso-CeAl-100 catalyst. Consequently, the Fe2O3/Meso-CeAl-100 catalyst showed excellent catalytic activity (1879 gBD/kgcat/h), high CO2 conversion (14%) and high BD selectivity (51%). Not only the structural properties and highly dispersed iron species, but also the good oxygen storage capacity and thus good CO2 adsorption and activation ability contributed positively to the good performance of Fe2O3/Meso-CeAl-100 catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.