Abstract

We present the design and analysis of a new gamma ray spectrometer for planetary science that uses an array of CdZnTe detectors to achieve the detection efficiency needed for orbital measurements. The use of CdZnTe will provide significantly improved pulse height resolution relative to scintillation-based detectors, with commensurate improvement in the accuracy of elemental abundances determined by gamma ray and neutron spectroscopy. The spectrometer can be flown either on the instrument deck of the spacecraft or on a boom. For deck-mounted systems, a BGO anticoincidence shield is included in the design to suppress the response of the CdZnTe detector to gamma rays that originate in the spacecraft. The BGO shield also serves as a backup spectrometer, providing heritage from earlier planetary science missions and reducing the risk associated with the implementation of new technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call