Abstract

Excellent spatial resolution is a requirement for preclinical PET imaging. In order to achieve spatial resolution of significantly better than one millimeter, an appealing possibility is to employ direct detector materials, such as cadmium telluride (CdTe). Prototype thin orthogonal strip detectors have been developed for testing. They have dimensions of 20 mm by 20 mm and are 0.5 mm thick, and have strips of 0.5 mm pitch on one side and 2.5 mm pitch on the other. Results are presented for the energy resolution (3% at 511 keV), intrinsic position resolution (equal to the 0.5 mm strip pitch), and timing resolution (3 ns FWHM in coincidence with an LSO detector, 8 ns FWHM for coincidence of two CdTe detectors) of the detectors. A PET scanner design is proposed using blocks made of the CdTe strip detectors, oriented in the blocks with their thin edges toward the center of the scanner. Simulation results suggest that this scanner, using a threshold of 250 keV, would have a sensitivity of 3.4% for a point source at its center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call