Abstract

ABSTRACTThe role of CdTe solar cell processing on the defect chemistry that limits open circuit voltage (VOC) is addressed in the thermochemical processing regimes commonly encountered in present-generation CdTe devices. The highest VOC is 0.91 V for a bulk CdTe crystal with ITO which is only marginally higher than VOC = 0.86 V obtained for polycrystalline CdTe films with CdS. Both fall ∼0.4 V short of the VOC expected for CdTe, having band gap EG = 1.5 eV. The present >16% efficient superstrate CdTe cell uses a process based on high-temperature, T > 500°C, CdTe growth on CdS, coupled with optimized methods for incorporating oxygen, sulfur, copper, and chloride species in the CdTe film. Pushing cell conversion efficiencies beyond 20% will require increasing VOC beyond 1V. However the present pathway of processing optimization will likely yield VOC and efficiency converging on 0.9 V and <20%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call