Abstract

Glioblastoma (GBM) is the most aggressive and infiltrating primary tumor of the central nervous system (CNS), showing a variety of mutations and a high degree of vascularity, cell polymorphism, and nuclear atypia. GBM treatment often recurs to surgical resection, but such protocol lacks efficacy since complete tumor removal is not entirely successful due to invasive cells that cannot be detected at the moment of the surgery. Here, we describe a new in vivo targeting and imaging method for GBM detection in an orthotropic mouse model using fluorescent CdTe quantum dots (CdTe QDs) conjugated to anti-glial fibrillary acidic protein (anti-GFAP). We conjugated and optimized red-emitting CdTe QDs to anti-GFAP to label GBM (U87 cell line) in vivo. The in vivo tumor growth was visualized by the hematoxylin and eosin staining and showed the successful delivery of GBM cells into the mouse brain parenchyma. CdTe/anti-GFAP QDs were injected into the tumor region, and their uptake by tumor cells was visualized by fluorescence microscopy, showing a specific dual labeling with vimentin-immunoreactive GBM. The results reported here provide new perspectives for using CdTe QDs in GBM detection, suggesting their potential application in imaging-guided surgery and a potential fluorescent tool to be applied in the monitoring of 3D tumor glial cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.