Abstract

CdTe/graphene/TiO2 films that served as photoanodes for cathodic protection application were prepared by an electrochemical deposition method. The deposition of graphene and CdTe nanoparticles (NPs) on the surface of the TiO2 nanotubes was confirmed by scanning electron microscope and transmission electron microscopy. The composites exhibited high light absorption in both the UV and visible light region. The results indicated that TiO2 nanotube photoelectrodes sensitized by 20-cycle graphene and 30-cycle CdTe NPs exhibited effective photocathodic protection properties for 304 stainless steel (304SS) under the visible-light illumination, with an photopotential of −750 mV versus saturated calomel electrode and a current density of 560 μA cm−2. Due to the efficient photogenerated charge separation, the three-component CdTe/graphene/TiO2 showed stronger photoresponse than pure TiO2 under visible-light illumination. In summary, the CdTe/graphene could improve the photocathodic protection properties of TiO2 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.