Abstract
Core–shell CdS/ZnS nanoparticles in arachidic acid film were prepared through a novel Langmuir–Blodgett (LB) approach. Post-deposition treatment of the precursor LB multilayers of cadmium arachidate with H 2S gas followed by intercalation of Zn 2+ ions and further sulfidation result in the formation of CdS/ZnS nanoparticles in the LB film. The formation of these nanoparticles and resulting changes in layered structures were studied by FTIR and X-ray reflection measurements. The optical properties were studied using UV–vis absorption and photoluminescence spectroscopy. A red-shift in the absorption spectrum and enhancement of CdS excitonic emission together with reduction of surface states emission suggest that after the intercalation step, a thin layer of ZnS surrounds the CdS nanoparticles, thus forming a core–shell structure. Subsequent to the second sulfidation, a further red-shift in absorption suggests the formation of a thicker ZnS coating on CdS. Electron diffraction of CdS nanoparticles coated with thicker ZnS showed the diffraction patterns of only ZnS, as expected for core–shell structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.