Abstract

In this present work, CdSe/ZnS core/shell quantum dots (QDs) were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the production of reactive oxygen species (ROS). Fast and highly efficient oxidation reactions of ALA to produce the hydroxyl radicals (HO*) and of GLU to produce the superoxide anion (O2*-) were observed in the cooperation of mercaptopropionic acid (MPA) capped-CdSe/ZnS QDs (MPA-QDs) under LED irradiation. Whereas, binding between MPA-QDs and coumarin-derived dendrimer (CdD)-captured silica particles (SiCdDs) through sol-gel GA enhanced singlet oxygen production under LED irradiation by about 80% as compared to that achieved using QDs only. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS production from ALA, GLU in cooperation with CdSe/ZnS QDs or QDs-coated SiCdDs under LED irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.