Abstract

Cadmium selenide (CdSe) nanocrystals ingrained dielectric nanocomposites in a B2O3–SiO2–Al2O3–Na2O–K2O borosilicate glass system were synthesized by a single step in situ melt quenching technique. The sizes of the nanocrystals as well as the band gap of the nanocomposites were controlled by both concentration of CdSe and post thermal treatment duration. The nanocomposites were characterized by different instrumental techniques including detailed photoluminescence studies. The sizes of the CdSe nanocrystals were found to alter in the range 4–16 nm as estimated from the effective mass approximation model and optical absorption spectroscopy. However, the TEM analysis revealed the generation of two different size ranges, 3–4 and 23–45 nm, of the particles within the dielectric matrix. Selected area diffraction (SAED) and x-ray diffraction (XRD) patterns authenticate the formation of hexagonal nanostructures of CdSe. These nanocomposites were found to be capable of exhibiting strong visible red luminescence around 715 nm on excitation at 446 nm. This has originated from the electron–hole recombination of CdSe nanocrystal and defects or traps related transitions. The properties of these nanocomposites advocate their significant applications as semiconductor based luminescent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.