Abstract
Photoanodes consisting of CdS sensitized titania nanorods with ZnS passivation layer are applied for solar cells. Single crystal TiO2 nanorods have been directly grown vertically on transparent conducting glass by a facile hydrothermal method and deposited with CdS and then a ZnS layer on the TiO2 surface via a successive ionic layer adsorption and reaction (SILAR) method. The properties of ZnS/CdS/TiNR are characterized by XRD, SEM, TEM, UV–Vis, XPS, and electrochemical analysis. The effect of ZnS amount is studied in this system. Electrochemical results indicate the photocurrent density (Jsc) is greatly improved by increasing amount of ZnS. The incident photo-to-current conversion efficiency (IPCE), open-circuit voltage-decay (OCVD) method, and electrochemical impedance spectra (EIS) obviously substantiate these results. By optimizing the length of titania nanorods and the amount of CdS and ZnS, the best efficiency of 1.8% was achieved for solar cell under AM 1.5 G illumination with Jsc = 4.19 mA cm−2, Voc = 0.82 V and FF = 54%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.