Abstract

CdS Quantum dots (QDs) anchored onto the surface of MOF-808 (hereafter designated as CdS QDs@MOF-808) were constructed by solvothermal method and applied for degradation of ciprofloxacin (CIP) under visible light irradiation. The impacts of pH values and initial concentrations of CIP on adsorption and photocatalytic activity were explored in detail. The as-prepared CdS QDs@MOF-808 composites showed enhanced synergistic adsorption capacity and photocatalytic properties, especially for the CM-20 sample with 20 % CdS QDs loading exhibiting about 5.2 times adsorption capacity (130 mg/g) and approximately 5.5 times photocatalytic removal rate ( 82 %) for CIP compared with the pristine CdS and MOF-808. Various techniques such as XPS, UV‐vis DRS, Zeta potential, EIS, PL as well as transient photocurrent responses have demonstrated that the synergistic effect of CdS QDs and MOF-808 is ascribed to the enhanced electrostatic interactions and Zr-S forces, improving the utilization of visible light and effectively photogenerated electrons transported from the conduction band of CdS to that of MOF-808. Gas chromatography-mass spectroscopy (GC-MS) was used to detect the possible intermediates in the degradation process of CIP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.