Abstract

In this paper we describe the combined use of surface-initiated atom transfer radical polymerization (ATRP) and a gas/solid reaction in the direct preparation of CdS-nanoparticle/block-copolymer composite shells on silica nanospheres. The block copolymer, consisting of poly(cadmium dimethacrylate) (PCDMA) and poly(methyl methacrylate) (PMMA), is obtained by repeatedly performing the surface-initiated ATRP procedures in N,N-dimethylformamide (DMF) solution at room temperature, using cadmium dimethacrylate (CDMA) and methyl methacrylate (MMA) as the monomers. CdS nanoparticles with an average size of about 3 nm are generated in situ by exposing the silica nanospheres coated with block-copolymer shells to H2S gas. These synthetic core–shell nanospheres were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). These composite nanospheres exhibit strong red photoluminescence in the solid state at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.