Abstract

CdS nanocrystals deposited on TiO2/crosslinked chitosan composite (CdS/TiO2/CSC) were prepared in an attempt to photocatalyze decolorization of water soluble azo dye in aqueous solution under simulated solar light irradiation. CdS/TiO2/CSC was characterized by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The characterization results proved that CdS nanocrystals has successfully been deposited on/in TiO2/crosslinked chitosan composite. The adsorption ability of CdS/TiO2/CSC was approximately 2.66mg methyl orange (a typical water soluble azo dye) per gram. The photocatalytic decolorization of methyl orange solution reached 99.1% by CdS/TiO2/CSC after simulated solar light irradiation for 210min. Kinetics analysis indicated that photocatalytic decolorization of methyl orange solution by CdS/TiO2/CSC obeyed first-order kinetic Langmuir-Hinshelwood mechanism (R2>0.997). CdS/TiO2/CSC exhibited enhanced photocatalytic activity under simulated solar light irradiation compared with photocatalysts reported before and the photocatalytic activity of CdS/TiO2/CSC maintained at 89.0% of initial decolorization rate after five batch reactions. The presence of NO3− accelerated the decolorization of methyl orange solution by CdS/TiO2/CSC, while SO42− and Cl− had an inhibitory effect on the decolorization of methyl orange. Therefore, present experimental results indicated to assess the applicability of CdS/TiO2/CSC as a suitable and promising photocatalyst for effective decolorization treatment of dye-containing effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.