Abstract

Manganese (0.05-9 mol.%) doped CdS nanorods were synthesized via solvothermal route using ethylenediamine (En) and a mixture of En and water as the solvents. The diameters and the lengths of the doped CdS nanorods varied from 40-100 nm and 600-2500 nm, respectively, with change in the composition of the solvents. The broad photoluminescence (PL) emission from the undoped CdS nanorods centered at approximately 535 nm is found to be blue shifted to 516 nm with the incorporation of Mn in the CdS crystal structure. Also increase in the intensity of the PL was noticed in the Mn doped CdS nanorods for both the solvent systems. Maximum PL intensity was observed for 1 mol.% Mn in case of En system and for 0.5 mol.% Mn in case of En/water system, above which quenching occurred as a result of Mn-Mn clustering. EPR study revealed six-line hyperfine splitting for low Mn concentration in both solvent systems. Increase in the Mn concentration caused EPR signal broadening due to Mn-Mn clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.