Abstract

For the diagnosis and treatment of cancer, a great challenge is the fabrication of straightforward, non-toxic, multifunctional green nanomaterials. In this study, carbon quantum dots self-assembled with indocyanine green dye at bovine serum albumin for phototherapy and in situ bioimaging are produced by a flexible hydrothermal method. We find that the synthesized nanoparticles have high tumor photothermal therapeutic activity when exposed to 808 nm light, with a photothermal conversion efficiency up to 61 %. The phototoxicity study revealed the excellent phototherapy of the nanoparticles mainly arises from photothermal therapeutic effect other than photodynamic therapy effect. Simultaneously, it allows biological imaging in the visible and near-infrared ranges because of the significant absorption at 365 nm and 840 nm. The current work offers a simple, environmentally friendly, and reasonable method for developing photothermal drugs with a high photothermal conversion efficiency in the near-infrared region, as well as good biosafety for multifunctional nanomaterials for bioimaging tumor diagnosis and direct phototherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call