Abstract

A simple ultrasonic assisted chemical technique was used to synthesise cadmium oxide (CdO) nanoparticles (NPs) and CdO NPs/c-Multiwalled carbon nanotube (c-MWCNT) nanocomposite fibres.To confirm the physio-chemico properties and to analyse surface morphology of the obtained nanomaterials X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were performed. To evaluate the anti-cancer property of CdO NPs, c-MWCNT NPs and CdO NPs/c-MWCNT nanocomposite fibres, an anti-proliferative assay test (Methylthiazolyl diphenyl- tetrazolium bromide - MTT assay) were performed on HeLa cells which further estimated IC50 value (Least concentration of sample in which nearly 50% of cells remain alive) under in-vitro conditions. On comparison, CdONPs/c-MWCNT based system was found to be superior by achieving 52.3% cell viability with its minimal IC50 value of 31.2 μg/ml. Lastly, the CdO NPs based system was taken up for an apoptotic study using DNA fragmentation assay for estimating its ability to cleave the DNA of the HeLa cells into internucleosomal fragments using the agarose gel electrophoresis method. In conclusion, based on our observations, CdO NPs/c-MWCNT hybrid based system can be further used for the development of efficient drug delivery and therapeutic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call