Abstract

Cerebral dopamine neurotrophic factor (CDNF) is an endogenous protein in humans and other vertebrates, and it has been shown to have protective and restorative effects on cells in various disease models. Although it is named as a neurotrophic factor, its actions are drastically different from classical neurotrophic factors such as neurotrophins or the glial cell line-derived neurotrophic family of proteins. Like all secreted proteins, CDNF has a signal sequence at the N-terminus, but unlike common growth factors it has a KDEL-receptor retrieval sequence at the C-terminus. Thus, CDNF is mainly located in the ER. In response to adverse effects, such as ER stress, the expression of CDNF is upregulated and can alleviate ER stress. Also different from other neurotrophic factors, CDNF reduces protein aggregation and inflammation in disease models. Although it is an ER luminal protein, it can surprisingly directly interact with alpha-synuclein, a protein involved in the pathogenesis of synucleinopathies e.g., Parkinson's disease. Pleiotropic CDNF has therapeutic potential and has been tested as a recombinant human protein and gene therapy. The neuroprotective and neurorestorative effects have been described in a number of preclinical studies of Parkinson's disease, stroke and amyotrophic lateral sclerosis. Currently, it was successfully evaluated for safety in a phase 1/2 clinical trial for Parkinson's disease. Collectively, based on recent findings on the mode of action and therapeutic potential of CDNF, its use as a drug could be expanded to other ER stress-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call