Abstract

Cantharidin (CTD) induces cytotoxic effects in different types of human cancer cell; however, to date, there have been no studies on the effects of CTD on gene expression in human lung cancer cells and the potential associated signaling pathways. Therefore, the present study aimed to investigate how CTD affects the expression of key genes and functional pathways of human H460 lung cancer cells using complementary DNA microarray analysis. Human H460 lung cancer cells were cultured for 24 h in the presence or absence of 10 μM CTD; gene expression was then examined using microarray analysis. The results indicated that 8 genes were upregulated > 4-fold, 29 genes were upregulated >3–4-fold and 156 genes were upregulated >2–3-fold. In addition, 1 gene was downregulated >4 fold, 14 genes were downregulated >3–4-fold and 150 genes were downregulated >2–3 fold in H460 cells following exposure to CTD. It was found that CTD affected DNA damage genes, including DNIT3 and GADD45A, which were upregulated 2.26- and 2.60-fold, respectively, as well as DdiT4, which was downregulated 3.14-fold. In addition, the expression of genes associated with the cell cycle progression were altered, including CCND2, CDKL3 and RASA4, which were upregulated 2.72-, 2.19- and 2.72-fold, respectively; however, CDC42EP3 was downregulated 2.16-fold. Furthermore, apoptosis-associated genes were differentially expressed, including CARD6, which was upregulated 3.54-fold. In conclusion, the present study demonstrated that CTD affected the expression of genes associated with DNA damage, cell cycle progression and apoptotic cell death in human lung cancer H460 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call