Abstract

To acquire Fe from soil, graminaceous plants secrete mugineic acid family phytosiderophores (MAs) from their roots. The secretion of MAs increases in response to Fe deficiency, and shows a distinct diurnal rhythm. We used a microarray that included 8987 cDNAs of rice EST clones to examine gene expression profiles in barley roots during Fe-deficiency stress. Approximately 200 clones were identified as Fe-deficiency-inducible genes, of which seven had been identified previously. In order to meet the increased demand for methionine to produce MAs, Fe-deficiency enhances the expression of genes that participate in methionine synthesis, as well as recycling methionine through the Yang cycle. Of these 200 genes, approximately 50 exhibited different transcription levels in Fe-deficient roots at noon and at night. Northern blot analysis of time course experiments confirmed that five of these genes exhibited a diurnal change in their level of expression. The diurnal changes in the expression of these genes suggest that polar vesicle transport is involved in the diurnal secretion of MAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.