Abstract

A cDNA library was constructed from liver mRNA of a beta-naphthoflavone-induced rabbit. Two clones pLM4-1 and pLM6-1 containing 2.2-kbp inserts that hybridized at low stringincy with a mouse P1 P-450 probe were selected. The clone pLM4-1 was fully sequenced and found to contain a full-length cDNA coding for cytochrome P-450 LM4. Partial sequence and restriction mapping made it possible to identify pLM6-1 as coding for the major part of cytochrome P-450 LM6. Cloned LM4-1 cDNA was reformed by deletion of the 5' and 3' non-coding regions before insertion into yeast expression vectors PYe DP1/10. A similar operation was performed on pLM6-1 cDNA after replacement of the missing N-terminus-coding sequences by homologous sequences form the pLM4-1 clone resulting in a chimeric cytochrome P-450 coding sequence. Expression of cloned rabbit cytochrome P-450 into transformed yeast was optimized by studying the effect of the nature of the DNA sequence just preceding the initiation codon on the level of cytochrome P-450 production. Yeast synthesized cytochromes P-450 were characterized by immunoblotting, spectra and catalytic activity determinations. Cloned cytochrome P-450 LM4 was found by all criteria to be identical to the authentic rabbit one. The chimeric cytochrome P-450 that contains the 143 N-terminal amino acids of cytochrome P-450 LM4 and the remaining 375 amino acids of cytochrome P-450 LM6 was found to exhibit most of the authentic cytochrome P-450 LM6 catalytic properties. Enzymatic and evolutionary implications of these results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call