Abstract
Straight-chain acyl-CoA oxidase is the first and rate limiting enzyme in the peroxisomal beta-oxidation pathway catalysing the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs, thereby producing H2O2. To study peroxisomal beta-oxidation we cloned and characterized the cDNA of mouse peroxisomal acyl-CoA oxidase. It consists of 3778 bp, including a 1983-bp ORF encoding a polypeptide of 661 amino-acid residues. Like the rat and human homologue the C-terminus contains an SKL motif, an import signal present in several peroxisomal matrix proteins. Sequence analysis revealed high amino-acid homology with rat (96%) and human (87%) acyl-CoA oxidase in addition to minor homology ( approximately 40%) with other related proteins, such as rabbit trihydroxy-cholestanoyl-CoA oxidase, human branched chain acyl-CoA oxidase and rat trihydroxycoprostanoyl-CoA oxidase. Acyl-CoA oxidase mRNA and protein expression were most abundant in liver followed by kidney, brain and adipose tissue. During mouse brain development acyl-CoA oxidase mRNA expression was highest during the suckling period indicating that peroxisomal beta-oxidation is most critical during this developmental stage. Comparing tissue mRNA levels of peroxisome proliferator-activated receptor alpha and acyl-CoA oxidase, we noticed a constant relationship in all tissues investigated, except heart and adipose tissue in which much more, and respectively, much less, peroxisome proliferator-activated receptor alpha mRNA in proportion to acyl-CoA oxidase mRNA was found. Our data show that acyl-CoA oxidase is an evolutionary highly conserved enzyme with a distinct pattern of expression and indicate an important role in lipid metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.