Abstract

High levels of Ca2+ in the endoplasmic reticulum (ER), established by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), are required for protein folding and cell signalling. Excessive ER Ca2+ release or decreased SERCA activity induces unfolded protein accumulation and ER stress in pancreatic β-cells, leading to defective insulin secretion and diabetes. Here we have investigated the consequences of enhancing ER Ca2+ uptake on β-cell survival and function. The effects of SERCA activator, CDN1163, on Ca2+ homeostasis, protein expression, mitochondrial activities, insulin secretion, and lipotoxicity have been studied in mouse pancreatic β-cells and MIN6 cells. CDN1163, increased insulin synthesis and exocytosis from islets. CDN1163 also increased the sensitivity of the cytosolic Ca2+ oscillation response to glucose and potentiated it in dispersed and sorted β-cells. CDN1163 augmented the ER and mitochondrial Ca2+ content, the mitochondrial membrane potential, respiration, and ATP synthesis. CDN1163 up-regulated expression of inositol 1,4,5-trisphosphate receptors and antioxidant enzymes, and mitochondrial biogenesis, including peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Overexpression of SERCA2a or 2b replicated the effects of CDN1163, while knockdown of SERCA2 abolished the stimulatory actions of CDN1163. In palmitate-treated β-cells, CDN1163 prevented ER Ca2+ depletion, mitochondrial dysfunction, cytosolic and mitochondrial oxidative stress, defective insulin secretion, and apoptotic cell death. Activation of SERCA enhanced mitochondrial bioenergetics and antioxidant capability, suppressing the cytotoxic effects of palmitate. Our results suggest that targeting SERCA could be a novel therapeutic strategy to protect β-cells from lipotoxicity and the development of Type 2 diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call