Abstract

Overexpression of Aurora kinases is largely observed in many cancers, including hematologic malignancies. In this study, we investigated the effects and molecular mechanisms of Aurora kinase inhibitors in acute lymphoblastic leukemia (ALL). Western blot analysis showed that both Aurora-A and Aurora-B are overexpressed in ALL cell lines and primary ALL cells. Both VE-465 and VX-680 effectively inhibited Aurora kinase activities in nine ALL cell lines, which exhibited different susceptibilities to the inhibitors. Cells sensitive to Aurora kinase inhibitors underwent apoptosis at an IC50 of ∼10-30 nM and displayed a phenotype of Aurora-A inhibition, whereas cells resistant to Aurora kinase inhibitors (with an IC50 more than 10 μM) accumulated polyploidy, which may have resulted from Aurora-B inhibition. Drug susceptibility of ALL cell lines was not correlated with the expression level or activation status of Aurora kinases. Interestingly, RS4;11 and MV4;11 cells, which contain the MLL-AF4 gene, were both sensitive to Aurora kinase-A inhibitors treatment. Complementary DNA (cDNA) microarray analysis suggested that CDKN1A might govern the drug responsiveness of ALL cell lines in a TP53-independent manner. Most importantly, primary ALL cells with MLL-AF4 and CDKN1A expression were sensitive to Aurora kinase inhibitors. Our study suggests CDKN1A could be a potential biomarker in determining the drug responsiveness of Aurora kinase inhibitors in ALL, particularly in MLL-AF4-positive patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call