Abstract

Adult T-cell leukemia/lymphoma (ATL) is a hematopoietic malignancy with a poor prognosis that develops in approximately 5% of human T-cell leukemia virus type 1 (HTLV-1) carriers. Cyclin-dependent kinase 9 (CDK9), together with Cyclin T, forms a transcription elongation factor, positive transcription elongation factor b (P-TEFb). P-TEFb promotes transcriptional elongation by phosphorylating the second serine (Ser2) of the seven amino acid repeat sequence in the C-terminal domain of RNA polymerase II (RNAP II). CDK9 inhibitors suppress cell proliferation by inducing apoptosis in chronic lymphocytic leukemia and breast cancer but there are no reports on autophagy of CDK9 inhibitors. Here, we investigated the effect of LY2857785, a novel CDK9 selective inhibitor, on cell death in ATL-related cell lines in vitro, freshly isolated cells from ATL patients ex vivo, and on ATL tumor xenografts in NOD/SCID mice in vivo. LY2857785 significantly reduced cell viability and induced apoptosis, as shown by annexin V-positive cells, cleaved poly(ADP-ribose) polymerase (PARP), and cleaved caspase-3, and suppressed the levels of anti-apoptotic protein myeloid cell leukemia-1 (MCL-1). LY2857785 decreased RNAP II Ser2 phosphorylation and downstream c-Myc protein levels. Interestingly, LY2857785 also increased microtubule-associated proteins 1A/1B light chain 3B (LC3)-II binding to autophagosome membranes. Furthermore, LY2857785 decreased the viability of freshly isolated ATL cells and induced apoptosis. Finally, LY2857785 significantly decreased the growth of ATL tumor xenografts. These results suggest that LY2857785 induces cell death of ATL cells by MCL-1-dependent apoptosis and autophagy and has anti-tumor activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call