Abstract

Inhibitors directed against cyclin dependent kinases (CDKs) have raised much interest as anti-cancer therapeutics over the last years. In particular, inhibitors directed against CDK4/6 have been declared as a major breakthrough in cancer therapy by the FDA. CDK4 and CDK6 bind to D-type cyclins and subsequently phosphorylate the RB protein to allow cells to progress through the G1 phase of the cell cycle. The effectiveness of CDK4/6 inhibitors was primarily assigned to their ability to block cell cycle progression. In hematopoietic malignancies high levels of CDK6, but not CDK4, are frequently found. Over the last years we have assigned a novel and unexpected role for CDK6 as global transcriptional regulator. ChIP-Seq experiments identified more than 20.000 specific CDK6 binding sites in leukemic cells with the majority located in the promoter regions. CDK6 binding to chromatin does not require kinase activity whereas transcriptional control is regulated in a kinase- dependent as well as kinase-independent manner. Overlaying ChIP-Seq and RNA-Seq experiments showed that CDK6 contributes to the induction or repression of genes. Target genes of CDK6 which are important for leukemia progression include PIM1, c-MYC, AURKA, AURKB, AKT and VEGF-A. Murine leukemia models verified the importance of CDK6 for myeloid and lymphoid tumor formation downstream of a variety of oncogenes including FLT3-ITD, NPM/ALK, MLL/AF9, BCR/ABL or JAK2V617F. CDK6 contributes to disease development by regulating proliferation, cell survival, angiogenesis and cytokine production. In hematopoietic stem cells and leukemic stem cells kinase-independent functions dominate and CDK6 controls a network of transcription factors regulating stem cell quiescence and activation. The importance of kinase-dependent transcriptional effects is pronounced under conditions of stress and transformation. Upon oncogenic stress, CDK6 induces a set of genes that counteract pro-apoptotic TP53 responses including MDM4, PRMT5, PPM1D and BCL2. This response is induced by a CDK6 - dependent phosphorylation of the transcription factors SP1 and NFYA as verified by phospho-chromatome analysis. Murine Cdk6-deficient cells only survive oncogenic stress by mutating Tp53. The link between CDK6 and TP53 is conserved in human hematopoietic malignancies. Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24(2):167-181.Scheicher R, Hoelbl-Kovacic A, Bellutti F, et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood. 2015;125(1):90-101.Uras IZ, Walter GJ, Scheicher R, et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood. 2016;127(23):2890-2902.Bellutti F, Tigan AS, Nebenfuehr S, et al. CDK6 antagonizes P53-induced responses during tumorigenesis. Cancer Discov. 2018;8(7):884-897.Uras IZ, Maurer B, Nivarthi H, et al. CDK6 coordinates JAK2V617F mutant MPN via NF-kB and apoptotic networks. Blood. 2019;133(15):1677-1690. Disclosures No relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.