Abstract

CA1 pyramidal neurons degenerate after transient forebrain ischemia, whereas neurons in other regions of the hippocampus remain intact. Here we show that in rat hippocampal CA1 neurons, forebrain ischemia induces the phosphorylation of the N-methyl-D-aspartate (NMDA) receptor 2A subunit at Ser1232 (phospho-Ser1232). Ser1232 phosphorylation is catalyzed by cyclin-dependent kinase 5 (Cdk5). Inhibiting endogenous Cdk5, or perturbing interactions between Cdk5 and NR2A subunits, abolished NR2A phosphorylation at Ser1232 and protected CA1 pyramidal neurons from ischemic insult. Thus, we conclude that modulation of NMDA receptors by Cdk5 is the primary intracellular event underlying the ischemic injury of CA1 pyramidal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call