Abstract

DNA damage response (DDR) pathways are critical for ensuring that replication stress and various types of DNA lesion do not perturb production of neural cells during development. Cdk12 maintains genomic stability by regulating expression of DDR genes. Mutant mice in which Cdk12 is conditionally deleted in neural progenitor cells (NPCs) die after birth and exhibit microcephaly with a thinner cortical plate and an aberrant corpus callosum. We show that NPCs of mutant mice accumulate at G2 and M phase, and have lower expression of DDR genes, more DNA double-strand breaks and increased apoptosis. In addition to there being fewer neurons, there is misalignment of layers IV-II neurons and the presence of abnormal axonal tracts of these neurons, suggesting that Cdk12 is also required for the migration of late-arising cortical neurons. Using in utero electroporation, we demonstrate that the migrating mutant cells remain within the intermediate zone and fail to adopt a bipolar morphology. Overexpression of Cdk5 brings about a partially restoration of the neurons reaching layers IV-II in the mutant mice. Thus, Cdk12 is crucial to the repair of DNA damage during the proliferation of NPCs and is also central to the proper migration of late-arising neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.