Abstract

Since the discovery of cyclin-dependent kinases (CDKs), it has been perceived as a dogma that CDK signaling in the cell cycle is mediated via targeting the CDK consensus sites: the optimal and the minimal motifs S/T-P-x-K/R and S/T-P, respectively. However, more recent evidence suggests that often the CDK phosphorylation events of regulatory importance are mediated via nonconventional CDK sites that lack the required +1Pro of the consensus site motif. In these cases, the loss of specificity seems to be compensated via distant docking interactions facilitated by 1) phosphorylated priming sites binding to phospho-adaptor Cks1 and/or 2) cyclin-specific docking interactions via Short Linear Motifs (SLiMs) in substrates. This Perspective discusses the possible reasons why nonconventional CDK sites are used for CDK signaling. First, the nonconventional CDK sites can act as specificity filters to recognize and distinguish the CDK signal from many other proline-directed kinases in cells. Second, the nonconventional CDK sites in combination with the docking mechanisms provide a much wider range of phosphorylation rates, and thus, also a wider range of CDK thresholds during the accumulation and decline of CDK activity during the cell cycle. As a large number of Cks1-dependent nonconventional CDK sites have been discovered recently, past studies focusing on mutating only the consensus sites should likely be critically reexamined. It is also very likely that phosphorylation of nonconventional sites is crucial in many other kinase-signaling networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call