Abstract
Knee osteoarthritis (OA) is a prevalent condition causing significant disability, particularly among the elderly, necessitating advancements in diagnostic methodologies to facilitate early detection and treatment. Traditional OA diagnosis, relying on radiography and physical exams, faces limitations in accuracy and objectivity. This underscores the need for more advanced diagnostic methods, such as machine learning (ML) and deep learning (DL), to improve OA detection and classification. This research introduces a novel ensemble learning approach for image data feature extraction which ingeniously combines the strengths of 2 advanced (ML) models with a (DL) method to substantially improve the accuracy of OA detection from radiographic images. This innovative strategy aims to address the limitations of traditional diagnostic tools by leveraging the enhanced sensitivity and specificity of combined ML and DL models. The methodology deployed in this study encompasses the application of 10 ML models to a comprehensive publicly available Kaggle dataset with a total of 3615 samples of knee X-ray images. Through rigorous k-fold cross-validation and meticulous hyperparameter optimization, we also included evaluation metrics like accuracy, receiver operating characteristic, precision, recall, and F1-score to assess our models' performance effectively. The proposed novel CDK (convolutional neural network, decision tree, K-nearest classifier) ensemble approach for feature extraction is designed to synergize the predictive capabilities of individual models, thereby significantly improving the detection accuracy of OA indicators within radiographic images. We applied several ML and DL approaches to the newly created feature set to evaluate performance. The CDK ensemble model outperformed state-of-the-art studies with a high-performance score of 99.72% accuracy. This remarkable achievement underscores the model's exceptional capability in the early detection of OA, highlighting its superiority in comparison to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.