Abstract

Cyclin-dependent kinase-5 (CDK-5) has been shown to play important roles in neuronal development and neurogenesis. In vitro studies indicate a role of CDK-5 in phosphorylation of neurofilaments (NFs). In this study, we have chosen the human neuroblastoma cell line SHSY5Y as a model system to study the in vivo phosphorylation of NF proteins by CDK-5. Upon differentiation of SHSY5Y cells with retinoic acid, we found that the phosphorylation of high molecular mass (NF-H) and medium molecular mass (NF-M) NFs increased, whereas the CDK-5 protein level and kinase activity were unaffected. The role of CDK-5 in the phosphorylation of cytoskeletal proteins was studied by using antisense oligonucleotides (ONs) to inhibit the expression of the CDK-5 gene. We found that inhibition of CDK-5 levels by antisense ON treatment resulted in a decrease in phosphorylation of NF-H that correlated with a decline in neurite outgrowth. These results demonstrate that CDK-5 is a major proline-directed kinase phosphorylating the human NF-H tail domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.