Abstract

Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen.

Highlights

  • Clostridium difficile is a Gram-positive, anaerobic, spore-forming bacterium causing mild diarrhea to fulminant colitis in humans

  • Bis-(39-59)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a bacterial second messenger controlling diverse bacterial phenotypes mostly known to be involved in the transition from free-living, motile to biofilm lifestyle in Gram-negative bacteria [4,5]. c-di-GMP has been shown to be involved in the development and cell cycle control in Caulobacter crescentus [6,7], and the modulation of virulence in several pathogens such as Vibrio cholerae, Vibrio vulnificus, Bordetella pertussis or Pseudomonas aeruginosa [8,9,10,11]. c-di-GMP is synthesized from 2 GTP molecules by enzymes named diguanylate cyclases (DGCs) that contain a GGDEF domain [12]

  • Studies on c-di-GMP have addressed with some depth many aspects regarding the proteins involved in its synthesis (DGCs and PDEAs) and the molecular targets of c-di-GMP such as proteins and riboswitches in several bacteria

Read more

Summary

Introduction

Clostridium difficile is a Gram-positive, anaerobic, spore-forming bacterium causing mild diarrhea to fulminant colitis in humans. C-di-GMP is synthesized from 2 GTP molecules by enzymes named diguanylate cyclases (DGCs) that contain a GGDEF domain [12]. It is degraded respectively into pGpG or 2 GMP by phosphodiesterases (PDEs) that contain an EAL (PDEA) or a HD-GYP domain [13,14]. 66 genes coding for predicted enzymes involved in c-diGMP turn-over are found in Shewanella oneidensis, 62 in V. cholerae, 41 in Pseudomonas aeruginosa, 29 in Escherichia coli, 6 in Bacillus subtilis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.