Abstract

An innovative cumulative distribution function (CDF)-based method is proposed for deriving optimal reinsurance contracts to maximize an insurer’s survival probability. The optimal reinsurance model is a non-concave constrained stochastic maximization problem, and the CDF-based method transforms it into a functional concave programming problem of determining an optimal CDF over a corresponding feasible set. Compared to the existing literature, our proposed CDF formulation provides a more transparent derivation of the optimal solutions, and more interestingly, it enables us to study a further complex model with an extra background risk and more sophisticated premium principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.