Abstract

Cdc42Hs is involved in cytoskeletal reorganization and is required for neurite outgrowth in N1E-115 cells. To investigate the molecular mechanism by which Cdc42Hs regulates these processes, a search for novel Cdc42Hs protein partners was undertaken by yeast two-hybrid assay. Here, we identify the 58-kD substrate of the insulin receptor tyrosine kinase (IRS-58) as a Cdc42Hs target. IRS-58 is a brain-enriched protein comprising at least four protein-protein interaction sites: a Cdc42Hs binding site, an Src homology (SH)3-binding site, an SH3 domain, and a tryptophan, tyrptophan (WW)-binding domain. Expression of IRS-58 in Swiss 3T3 cells leads to reorganization of the filamentous (F)-actin cytoskeleton, involving loss of stress fibers and formation of filopodia and clusters. In N1E-115 cells IRS-58 induces neurite outgrowth with high complexity. Expression of a deletion mutant of IRS-58, which lacks the SH3- and WW-binding domains, induced neurite extension without complexity in N1E-115 cells. In Swiss 3T3 cells and N1E-115 cells, IRS-58 colocalizes with F-actin in clusters and filopodia. An IRS-58(1267N) mutant unable to bind Cdc42Hs failed to localize with F-actin to induce neurite outgrowth or significant cytoskeletal reorganization. These results suggest that Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing protein complexes via adaptor proteins such as IRS-58 to F-actin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.