Abstract
Cdc20, an activator of the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase, initiates the destruction of key mitotic regulators to facilitate mitosis, while it is negatively regulated by the spindle assembly checkpoint (SAC) to prevent premature anaphase entry. Activation of the p38 mitogen-activated protein kinase could contribute to mitotic arrest, but the underlying mechanism is unknown. Here we report a novel pathway in which the p38 signaling triggers Cdc20 destruction under SAC elicited by cadmium, a human carcinogen. We found that the cadmium-induced prometaphase arrest was linked to decreased Cdc20 and accumulated cyclin A protein levels in human cells, whereas the activity of cyclin B1-Cdk1 was unaffected. The Cdc20 half-life was markedly shortened along with its ubiquitination and degradation via 26S proteasome in cadmium-treated asynchronous or G(2)-enriched cells. Depletion of APC3 markedly suppressed the cadmium-induced Cdc20 ubiquitination and proteolysis, while depletion of Cdh1, another activator of APC/C, did not. Intriguingly, blockage of p38 activity restored the Cdc20 levels for continuing mitosis under cadmium, while inhibition of JNK activity had no effect. The cadmium-induced Cdc20 proteolysis was also suppressed during transient depletion of p38alpha or stable expression a dominant negative form of p38. Inhibition of p38 abolished the induction of Mad2-Cdc20-APC3 complex by cadmium. Moreover, forced expression of MKK6-p38 signaling could promote Cdc20 degradation in a Cdh1-independent APC/C pathway. In summary, accelerated ubiquitination and proteolysis of Cdc20 is essential for prometaphase arrest that is mediated via the p38 signaling during SAC activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.