Abstract
CD9 is a member of the tetraspanin protein family, which has been widely studied in inflammation and cancer, but not in pathological cardiac hypertrophy. In this study, we found that the expression of CD9 was increased in transaortic constriction (TAC) myocardial tissue. Knockdown of CD9 alleviated damage to cardiac function in the TAC model and reduced heart weight, cardiomyocyte size, and degree of fibrosis, and vice versa. Mechanistically, co-immunoprecipitation results showed that CD9 and GP130 can bind to each other in cardiomyocytes, and knockdown of CD9 can reduce the protein level of GP130 and the phosphorylation of STAT3 invivo and invitro, and vice versa. GP130 knockdown reversed the aggravating effects of CD9 on pathological cardiac hypertrophy. Therefore, we conclude that CD9 exacerbates pathological cardiac hypertrophy by regulating the GP130/STAT3 signaling pathway and may serve as a therapeutic target for pathological cardiac hypertrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.