Abstract

An increasing number of studies suggest that individual subsets of dendritic cells (DC) exhibit distinct capabilities with regard to the generation of the adaptive immune response. In this study, we evaluated the properties of a relatively unexplored DC subset present in the lung-draining mediastinal lymph node. This subset expresses the airway dendritic cell marker CD103 together with CD8. These DC were of interest given that our previous studies using a model of respiratory infection with vaccinia virus revealed a distinct difference in the ability of CD103(+) DC to prime T cells that correlated inversely with the expression of CD8, suggesting a differential role of these DC in the context of respiratory virus infection. To expand our understanding of the role of this DC population, we performed analyses to elucidate the phenotype, migratory capacity, responsiveness to innate stimuli, and priming capacity of CD8(+) CD103(+) DC. We found that expression of surface markers on these DC was similar to that of CD8(-) CD103(+) DC, supporting their close relationship. Further, the two DC types were similar with regard to antigen uptake. However, although both CD103(+) subsets originated from the lung, CD8-bearing CD103(+) DC appeared in the lymph node with delayed kinetics following virus infection. While this subset exhibited increased responsiveness to a number of Toll-like receptor (TLR) agonists, their response to infection was virus specific, demonstrating poor responsiveness to vaccinia virus infection but robust maturation following infection with parainfluenza virus 5 or influenza virus. These findings show that CD8 marks a population of lung airway-derived DC with distinct migratory and maturation responses that likely contribute differentially to the immune response depending on the infecting pathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.