Abstract

Regulatory B10 cells have been shown to exhibit impaired functions in autoimmune diseases. However, the underlying mechanism is still obscure. In the present study, we aimed to understand the regulatory characteristics of regulatory B10 cells and how these cells are involved in the development of rheumatoid arthritis (RA). Here, we chose CD19+CD24hiCD27+ as the phenotype of regulatory B10 cells. We found that the frequencies of CD19+CD24hiCD27+ regulatory B10 cells were decreased and that their IL-10-producing function was impaired in patients with RA compared with healthy controls (HCs). The impairment in CD19+CD24hiCD27+ B10 cells was partially attributed to the decreased expression of CD27 induced by the upregulated CD70 expression on CD19 + B cells and CD4 + T cells. The proportion of CD19+CD24hiCD27+ regulatory B10 cells could be restored by blocking the CD70-CD27 interaction with an anti-CD70 antibody. Furthermore, the CD70-CD27 interaction significantly elevated IL-10 expression and might compensate for the decreased number of CD19+CD24hiCD27+ B cells. Hence, the CD70-CD27 interaction might play a critical role in the numerical and functional impairments of regulatory B10 cells, thus contributing to RA pathogenesis. In conclusion, the change in CD19+CD24hiCD27+ regulatory B10 cells in RA was only a consequence, not the cause, of RA development, but the increased expression of CD70 might be the culprit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.