Abstract

Whether CD5 on B cells marks a subset functionally distinct from the conventional CD5 negative (CD5neg) adult population or is more an indicator of activation, remains contentious. Here we have investigated whether CD5 positive (CD5pos) and CD5neg B cells can be distinguished in terms of their response to surrogate signals aimed to model, in vitro, T-cell dependent (TD) and T-independent (TI) encounters with antigen in vivo: the predominantly CD5pos B-cell population found in cord blood, CD5 B cells positively selected from tonsils and their CD5neg counterparts, were compared. Neonatal B cells displayed a near-identical phenotype to that of adult CD5pos B cells, being characterized by uniform immunoglobulin M (IgM), immunoglobulin D (IgD), CD23 and CD44 coexpression. When cultured with anti-IgM maintained at high density on CD32-tranfected mouse L cells to model TI responses or on CD40 ligand (CD40L)-bearing L cells (with or without captured anti-IgM) to model TD encounters, DNA synthesis was stimulated to a similar extent in all three populations. Focusing on CD5 and CD23, we found that - although the signals delivered promoted distinct profiles of expression - under each condition of activation, the phenotypes that emerged for adult CD5pos and CD5neg B cells were remarkably similar. Neonatal B cells displayed a greater diminution in CD5 expression than adult CD5pos B cells following CD40 signals but otherwise the two populations again behaved similarly. The inclusion of interleukin-4 (IL-4) to cultures where cells were costimulated via surface (s)IgM and CD40 resulted in a complete loss of CD5 expression and a corresponding hyperexpression of CD23, irrespective of the population studied. The near-identical response of CD5pos and CD5neg B cells to surrogate TD or TI signals in vitro and their convergence to indistinguishable phenotypes is wholly supportive of CD5 being a fluctuating marker of activation rather than it delineating functionally distinct subsets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.