Abstract

CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call