Abstract
CD45 plays a critical regulatory role in receptor signaling through its protein tyrosine phosphatase and Janus kinase (JAK) phosphatase activities. To investigate whether CD45 also plays a regulatory role in Ig class switching in human B cells, we examined the effects of CD45 triggering on Ig class switching to IgE and its relationship with CD45 JAK phosphatase activity. Anti-CD45 triggering of CD45 significantly inhibited interleukin-4 + anti-CD40-induced switch recombination in a switch recombination vector assay in stably transfected Ramos 2G6 human B cells, as well as Ig epsilon germ-line transcription and Smu-Sepsilon switch recombination in primary human B cells. These negative regulatory effects on Ig class switching were concomitant with the ability of CD45 to dephosphorylate the induced phosphorylation of JAK1, JAK3, and signal transducer and activator of transcription 6, but not on stress-activated/mitogen-activated protein kinases. We also showed that phosphorylated JAK1 and JAK3 were directly dephosphorylated by recombinant CD45 in vitro. These results indicate that CD45 is able to function as JAK phosphatase in human B cells and that this activity is directly associated with the negative regulation of the class switch recombination to IgE. CD45 may be an appropriate target drug for modulating IgE in allergic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.