Abstract

Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. CD44, a putative breast cancer stem cell (CSC) marker, is overexpressed in trastuzumab-resistant breast cancer cells. While CSC-related genes may play a role in the development of trastuzumab resistance, conflicting results have been published about CSC response to trastuzumab. We hypothesized that CD44 contributes to trastuzumab resistance independently of its role as a CSC marker. We used trastuzumab-sensitive breast cancer cell lines and their trastuzumab-resistant isogenic counterparts to evaluate the role of CD44 in response to trastuzumab. miRNA and mRNA expression were analyzed using microarray chips. A gene set enrichment analysis was created and matched with response to trastuzumab in cells and patient samples. The proportions of CSC in trastuzumab-resistant cells were similar to or lower than in the trastuzumab-sensitive cells. However, CD44 expression levels were significantly higher in both trastuzumab-resistant cell lines and its knockdown led to an increased response to trastuzumab. The invasiveness and anchorage-independent growth of trastuzumab-resistant cells were higher and blocked by downregulation of CD44. Results also showed that CD44-related resistance to trastuzumab is regulated by miRNAs. We identified a CD44-related gene expression profile that correlated with response to trastuzumab in cell lines and breast cancer patients. CD44 mediates trastuzumab resistance in HER2-positive breast cancer cells independently of its role as a CSC marker and that this role of CD44 is partly regulated by miRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call