Abstract

The role of CD40/CD154 ligation in the upregulation of genes of the proinflammatory nuclear factor-kappaB (NF-kappaB) signal transduction pathway was explored in primary cultures of human renal proximal tubule epithelial cells. Using a cDNA gene array specific for human NF-kappaB signal pathway genes, 38 genes were upregulated at 1 h, and 7 of these genes remained upregulated at 3 h. Of these genes, intercellular adhesion molecule-1 (ICAM-1) was explored in further detail. Quantitative real-time PCR for ICAM-1 mRNA expression confirmed the gene array findings. Western blot analysis and quantitative sandwich-enzyme ELISA confirmed this observation at the protein level. A cell-surface ELISA assay showed that ICAM-1 expression doubled by 48 h of CD154 exposure, and fluorescence-activated cell sorter analysis suggested that both the number of cells expressing ICAM-1 and the expression of ICAM-1 on these cells had increased. A cell adhesion assay using fluorescein-labeled human peripheral mononuclear cells showed that ICAM-1 upregulation resulted in increased mononuclear cell adhesion to the monolayer, which was abrogated by pretreatment of the monolayer with a neutralizing ICAM-1 antibody. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB-203580 but not the extracellular signal-regulated kinase 1/2 inhibitor (PD-98059) nor the protein kinase C inhibitor (calphostin) blunted ICAM-1 expression and mononuclear cell adhesion to the monolayer. We conclude that, in human renal proximal tubule epithelial cells, CD40 activation upregulates ICAM-1 (and other NF-kappaB pathway genes) expression with concomitant enhanced adhesion of mononuclear cells, which is mediated via the p38 MAPK signal transduction pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call