Abstract

Spontaneous antigen-specific T cell responses can be generated in hosts harboring a variety of solid malignancies, but are subverted by immune evasion mechanisms active within the tumor microenvironment. In contrast to solid tumors, the mechanisms that regulate T cell activation versus tolerance to hematological malignancies have been underexplored. A murine acute myeloid leukemia (AML) model was used to investigate antigen-specific T cell responses against AML cells inoculated i.v. versus s.c. Robust antigen-specific T cell responses were generated against AML cells after s.c., but not i.v., inoculation. In fact, i.v. AML cell inoculation prevented functional T cell activation in response to subsequent s.c. AML cell challenge. T cell dysfunction was antigen specific and did not depend on Tregs or myeloid-derived suppressor cells (MDSCs). Antigen-specific TCR-Tg CD8+ T cells proliferated, but failed to accumulate, and expressed low levels of effector cytokines in hosts after i.v. AML induction, consistent with abortive T cell activation and peripheral tolerance. Administration of agonistic anti-CD40 Ab to activate host APCs enhanced accumulation of functional T cells and prolonged survival. Our results suggest that antigen-specific T cell tolerance is a potent immune evasion mechanism in hosts with AML that can be reversed in vivo after CD40 engagement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.