Abstract
The hallmark of acquired immunodeficiency syndrome (AIDS) pathogenesis is a progressive depletion of CD4(+) T-cell populations in close association with progressive impairment of cellular immunity and increasing susceptibility to opportunistic infections (OI). Disease progression in untreated human immunodeficiency virus (HIV) infection can take many years, and it was originally hypothesized to be a consequence of slow, viral-mediated CD4(+) T-cell destruction. However, massive CD4(+) memory T-cell destruction is now known to occur quite early in infection, almost always without overt immunodeficiency. In most individuals, this initial destruction is countered by CD4(+) memory T-cell regeneration that preserves CD4(+) T-cell numbers and functions above the threshold associated with overt immunodeficiency. This regeneration, which occurs in the setting of chronic immune activation and immune dysregulation does not, however, restore all functionally important CD4(+) T-cell populations and is not stable over the long term. Ultimately, CD4(+) memory T-cell homeostasis fails and critical effector populations decline below the level necessary to prevent OI. Thus, the onset of overt immune deficiency appears to be intimately linked with CD4(+) memory T-cell dynamics and reflects the complex interplay of direct viral cytopathogenicity and the indirect effects of persistent immune activation on CD4(+) memory T-cell proliferation, differentiation, and survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.