Abstract

Amebiasis in the murine model can be prevented by vaccination with the Gal/GalNAc lectin through a T cell-dependent mechanism. In this work we further decipher the mechanism of this protection. Mice vaccinated with the recombinant “LecA” fragment of the Gal/GalNAc lectin with alum were capable of transferring protection to naïve recipients by both CD4+ T cells and surprisingly CD8+ T cells. We then examined the cytokine profile of these cells. CD4+ T cells from PBMC of LecA-alum vaccinated mice were observed to be a major source of IFN-γ, known to be a protective cytokine with this vaccine. In contrast, CD8+ T cells produced relatively little IFN-γ but more IL-17 than the CD4 compartment. We thus examined the role of IL-17 in vaccine mediated protection and found through neutralization experiments that this cytokine contributed to LecA-alum vaccine protection. In addition we examined whether these cells exhibited direct amebicidal activity in vitro and found that both populations had amebicidal activity at high concentrations (1000:1) but CD8+ T cells appeared more potent, capable of cytotoxicity at a 100:1 ratio. In conclusion, both CD4 and CD8 T cells exert protection with this amebiasis vaccine. The mechanism of CD8 T cell-mediated protection may include direct amebicidal activity and/or IL-17 production. Both IL-17 and IFN-γ are useful surrogates for immune protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call